Monday, May 6, 2013

Trigonometric Identities and Formulas





Trigonometric Identities and Formulas



Below are some of the most important definitions, identities and formulas in trigonometry.



  1. Trigonometric Functions of Acute Angles

    sin X = opp / hyp = a / c , csc X = hyp / opp = c / a

    tan X = opp / adj = a / b , cot X = adj / opp = b / a

    cos X = adj / hyp = b / c , sec X = hyp / adj = c / b ,

    acute angle trigonometric functions.
  2. Trigonometric Functions of Arbitrary Angles

    sin X = b / r , csc X = r / b

    tan X = b / a , cot X = a / b

    cos X = a / r , sec X = r / a

    acute angle trigonometric functions.
  3. Special Triangles

    Special triangles may be used to find trigonometric functions of special angles: 30, 45 and 60 degress.

    special triangles.
  4. Sine and Cosine Laws in Triangles

    In any triangle we have:

    1 - The sine law

    sin A / a = sin B / b = sin C / c

    2 - The cosine laws

    a 2 = b 2 + c 2 - 2 b c cos A

    b 2 = a 2 + c 2 - 2 a c cos B

    c 2 = a 2 + b 2 - 2 a b cos C

    triangles.
  5. Relations Between Trigonometric Functions

    cscX = 1 / sinX

    sinX = 1 / cscX

    secX = 1 / cosX

    cosX = 1 / secX

    tanX = 1 / cotX

    cotX = 1 / tanX

    tanX = sinX / cosX

    cotX = cosX / sinX
  6. Pythagorean Identities

    sin 2X + cos 2X = 1

    1 + tan 2X = sec 2X

    1 + cot 2X = csc 2X
  7. Negative Angle Identities

    sin(-X) = - sinX , odd function

    csc(-X) = - cscX , odd function

    cos(-X) = cosX , even function

    sec(-X) = secX , even function

    tan(-X) = - tanX , odd function

    cot(-X) = - cotX , odd function
  8. Cofunctions Identities

    sin(pi/2 - X) = cosX

    cos(pi/2 - X) = sinX

    tan(pi/2 - X) = cotX

    cot(pi/2 - X) = tanX

    sec(pi/2 - X) = cscX

    csc(pi/2 - X) = secX
  9. Addition Formulas

    cos(X + Y) = cosX cosY - sinX sinY

    cos(X - Y) = cosX cosY + sinX sinY

    sin(X + Y) = sinX cosY + cosX sinY

    sin(X - Y) = sinX cosY - cosX sinY

    tan(X + Y) = [ tanX + tanY ] / [ 1 - tanX tanY]

    tan(X - Y) = [ tanX - tanY ] / [ 1 + tanX tanY]

    cot(X + Y) = [ cotX cotY - 1 ] / [ cotX + cotY]

    cot(X - Y) = [ cotX cotY + 1 ] / [ cotX - cotY]
  10. Sum to Product Formulas

    cosX + cosY = 2cos[ (X + Y) / 2 ] cos[ (X - Y) / 2 ]

    sinX + sinY = 2sin[ (X + Y) / 2 ] cos[ (X - Y) / 2 ]
  11. Difference to Product Formulas

    cosX - cosY = - 2sin[ (X + Y) / 2 ] sin[ (X - Y) / 2 ]

    sinX - sinY = 2cos[ (X + Y) / 2 ] sin[ (X - Y) / 2 ]
  12. Product to Sum/Difference Formulas

    cosX cosY = (1/2) [ cos (X - Y) + cos (X + Y) ]

    sinX cosY = (1/2) [ sin (X + Y) + sin (X - Y) ]

    cosX sinY = (1/2) [ sin (X + Y) - sin[ (X - Y) ]

    sinX sinY = (1/2) [ cos (X - Y) - cos (X + Y) ]
  13. Difference of Squares Formulas

    sin 2X - sin 2Y = sin(X + Y)sin(X - Y)

    cos 2X - cos 2Y = - sin(X + Y)sin(X - Y)

    cos 2X - sin 2Y = cos(X + Y)cos(X - Y)
  14. Double Angle Formulas

    sin(2X) = 2 sinX cosX

    cos(2X) = 1 - 2sin 2X = 2cos 2X - 1

    tan(2X) = 2tanX / [ 1 - tan 2X ]
  15. Multiple Angle Formulas

    sin(3X) = 3sinX - 4sin 3X

    cos(3X) = 4cos 3X - 3cosX

    sin(4X) = 4sinXcosX - 8sin 3XcosX

    cos(4X) = 8cos 4X - 8cos 2X + 1
  16. Half Angle Formulas

    sin (X/2) = + or - SQRT [ (1 - cosX) / 2 ]

    cos (X/2) = + or - SQRT [ (1 + cosX) / 2 ]

    tan (X/2) = + or - SQRT [ (1 - cosX) / (1 + cosX) ]

    = sinX / (1 + cosX) = (1 - cosX) / sinX
  17. Power Reducing Formulas

    sin 2X = 1/2 - (1/2)cos(2X))

    cos 2X = 1/2 + (1/2)cos(2X))

    sin 3X = (3/4)sinX - (1/4)sin(3X)

    cos 3X = (3/4)cosX + (1/4)cos(3X)

    sin 4X = (3/8) - (1/2)cos(2X) + (1/8)cos(4X)

    cos 4X = (3/8) + (1/2)cos(2X) + (1/8)cos(4X)

    sin 5X = (5/8)sinX - (5/16)sin(3X) + (1/16)sin(5X)

    cos 5X = (5/8)cosX + (5/16)cos(3X) + (1/16)cos(5X)

    sin 6X = 5/16 - (15/32)cos(2X) + (6/32)cos(4X) - (1/32)cos(6X)

    cos 6X = 5/16 + (15/32)cos(2X) + (6/32)cos(4X) + (1/32)cos(6X)
  18. Trigonometric Functions Periodicity

    sin (X + 2Pi) = sin X , period 2Pi

    cos (X + 2Pi) = cos X , period 2Pi

    sec (X + 2Pi) = sec X , period 2Pi

    csc (X + 2Pi) = csc X , period 2Pi

    tan (X + Pi) = tan X , period Pi

    cot (X + Pi) = cot X , period Pi






No comments:

Post a Comment